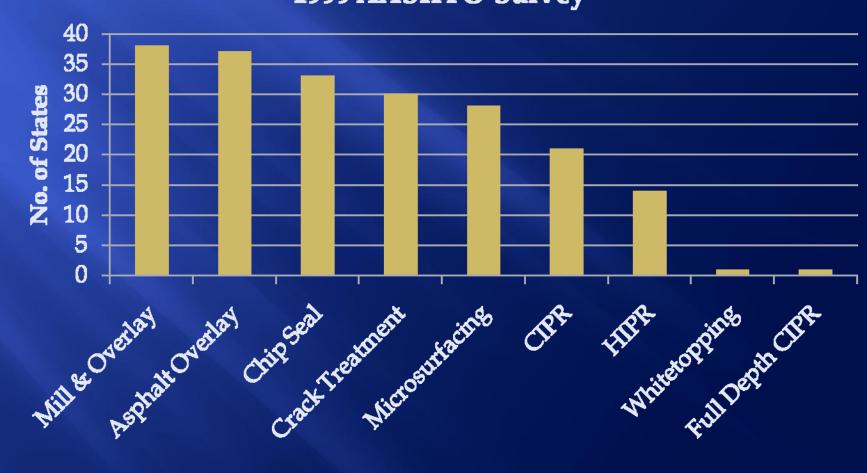

THIN ASPHALT OVERLAYS FOR PAVEMENT PRESERVATION



Why Thin Asphalt Overlays?

- Shift from new construction to renewal and preservation
- Functional improvements for safety and smoothness needed more than structural improvements – Perpetual Pavements
- Material improvements
 - Binders Superpave and Polymers
 - SMA, OGFC and Dense-Graded
 - Superpave mix design
 - Warm Mix
 - Reclaimed Asphalt Pavement (RAP)
 - Roofing Shingles

Thin Asphalt Overlays are Popular

Benefits of Thin Asphalt Overlays

- Long service, low lifecycle cost
- Maintain grade and slope
- Handles heavy traffic
- Smooth surface
- Seal the surface
- No loose stones
- Minimize dust
- Minimize traffic delays

- No curing time
- Low noise generation
- No binder runoff
- Can be recycled
- Can use in stage construction
- Easy to maintain
- Restore skid resistance

Topics

- Project Selection
- Materials Selection and Mix Design
- Construction and Quality Control
- Performance
- Conclusions

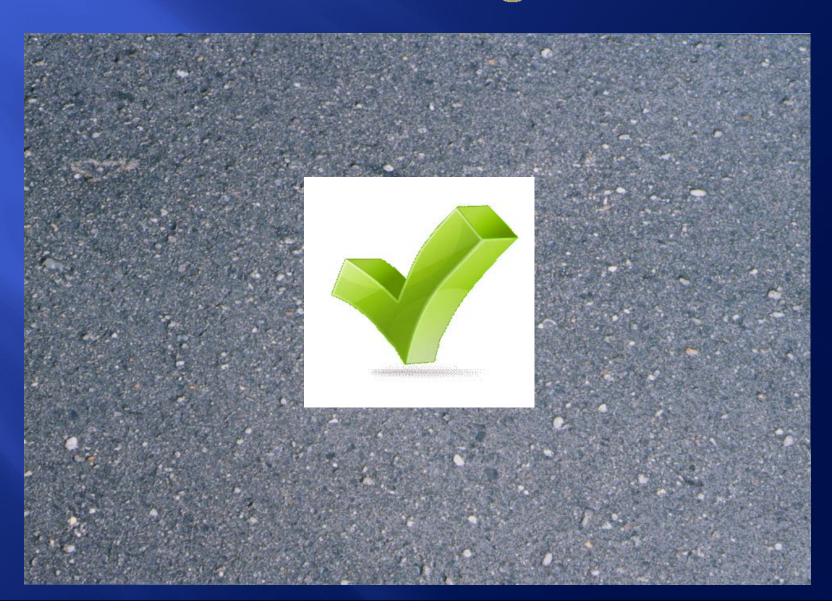
Project Selection

Avoid Projects Needing Structural Rehabilitation!!

Basic Evaluation

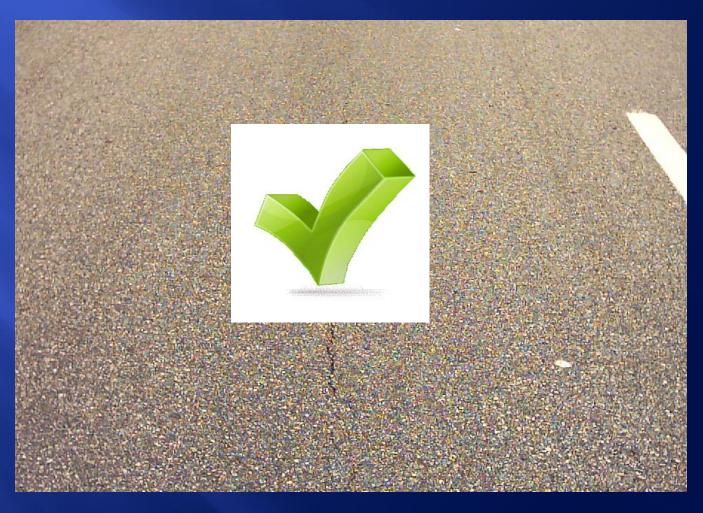
- Visual Survey
- Structural Assessment
 - No structural improvement required
- Drainage Evaluation
 - What changes are needed
- Functional Evaluation
 - Ride quality
 - Skid resistance
- Discussion with Maintenance Personnel

Visual Survey

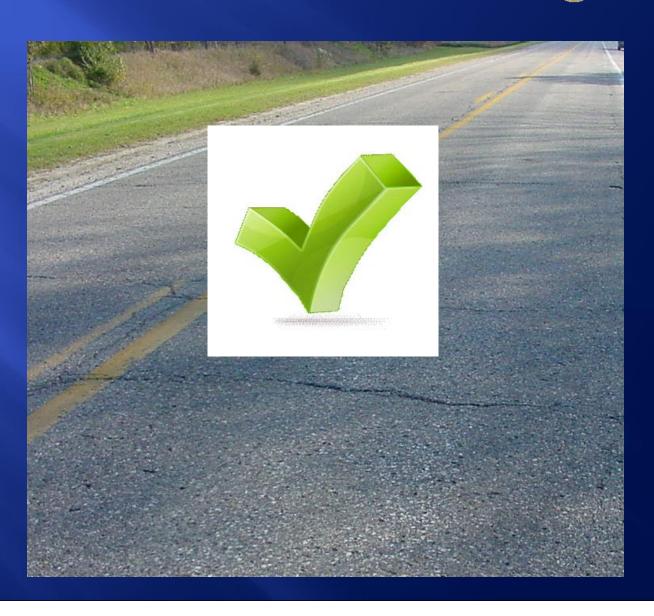

- Part of a good Pavement Management System.
- Get good, current projectspecific data
- Need to know:
 - Type of distress
 - Extent
 - Severity
- Visit the site and validate data.

Types of Distress

- Raveling
- Longitudinal Cracking (not in wheelpath)
- Longitudinal Cracking (in wheelpath)
- Transverse Cracking
- Alligator Cracking
- Rutting


Raveling

Longitudinal Cracking (not in wheelpath)



Longitudinal Cracking (wheelpath)

Temporary Fix for Minor Distress

Transverse Cracking

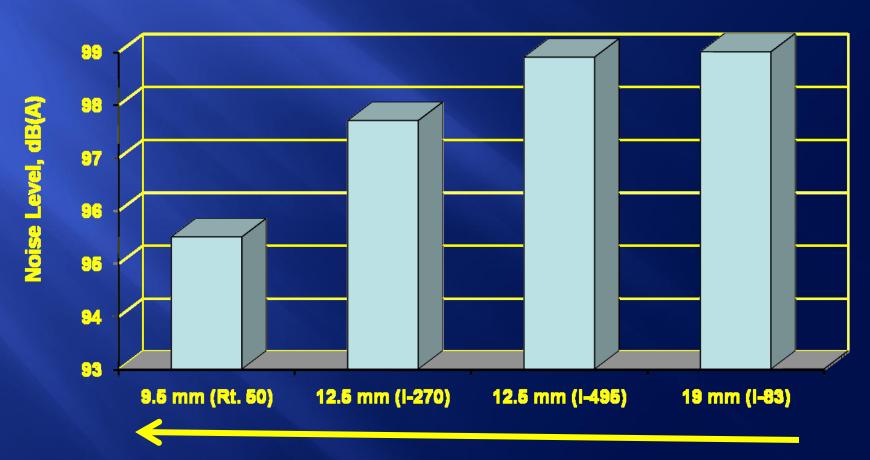
Alligator (Fatigue) Cracking

Temporary Fix for Minor Distress

Rutting or Shoving

Surface Failure – Milling Required

Ride Quality and Skid Resistance


Rough Surfaces
Should be Milled

Skid Problems can be Milled, but not Required

Noise can be Reduced

NCAT Noise Trailer

Smaller Aggregate = Less Noise

Drainage Evaluation

If a Thin Overlay is the Answer. . .

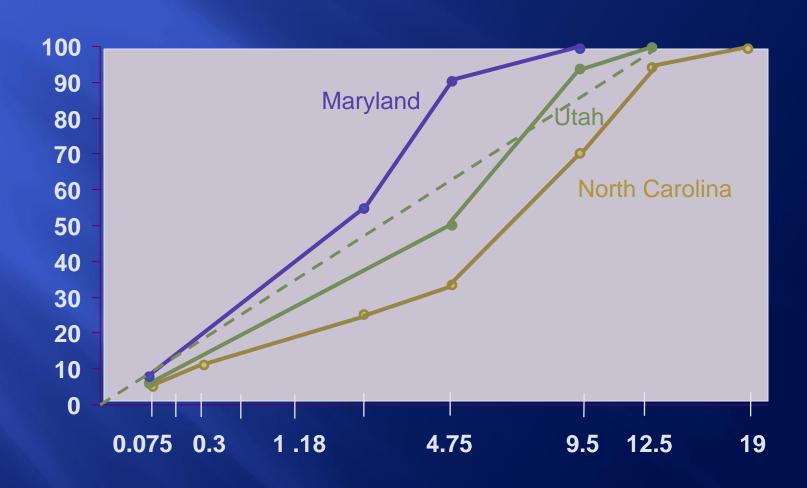
Select

- Surface Preparation
 - Distresses
 - Roughness
 - Considerations for Curb Reveal and Drainage
- Materials
 - Traffic
 - Availability
 - Climate
- Thickness
 - NMAS
 - Geometrics

Surface Preparation

	Mill	Fill Cracks with Mix	Clean and Tack
Raveling			*
Long. Crack – not in w.p.	√	✓	
Long. Crack – w.p.	√	√	
Transverse Crack	√	√	
Alligator Crack	1		
Rutting	1		

Materials & Mix Design


- * Materials Selection
- Mix Design for Dense-Graded Mixes
- * Other Mix Types

Materials Selection - Aggregate

- Thin overlays need small NMAS
 - Thin overlays ≤ 1.5 inches thick
 - Aggregate size between 4.75 and 12.5 mm NMAS
 - Ratio of lift thickness to NMAS range 3:1 to 5:1
- Quality
 - LA Abrasion: 35-48 maximum
 - Sodium Sulfate: 10-16 maximum
 - CA Fractured Faces (does not apply to 4.75 mm)
 - □ 2 or More: 80-90
 - **1: 10-100**
 - Sand Equivalent: 28-60
 - FA Angularity (Uncompacted Voids): 40-45

Example Gradations

Materials Selection - Binder

- Most specifications use PG system for climate and traffic
 - Minnesota Unmodified binder
 - Ohio Polymer modified PG 64-22 or PG 76-22
 - New York same as Ohio
 - New Jersey PG 76-22 for high performance mix
 - North Carolina depends upon traffic level

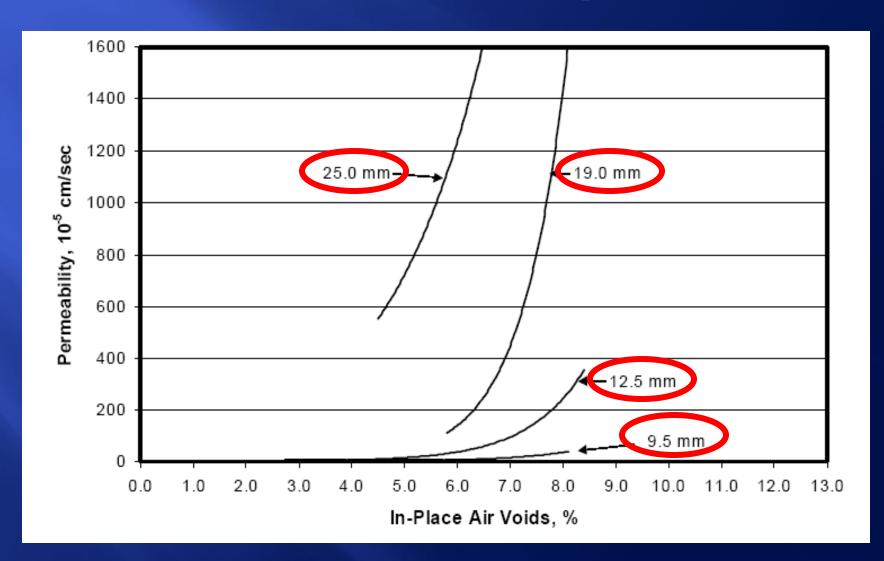
Materials Selection - RAP

- Small NMAS mixes should contain fine RAP
- RAP or shingles will help
 - Stabilize cost by reducing added asphalt and added aggregate
 - Prevent rutting
 - Prevent scuffing
- Use maximum allowable while maintaining gradation

Mix Design

Laboratory Compaction

- Low Volume 50 gyrations in MD and GA
- Medium Volume 60 to 75 in MD, NY, AL
- High Volume 60 (AL) to 125 (UT)
- Needs to be enough for interlock without fracturing aggregate


Volumetrics

- Void Requirements Mixes are relatively impermeable
- VMA Should increase as NMAS decreases
- Asphalt Content Should depend on Voids and VMA

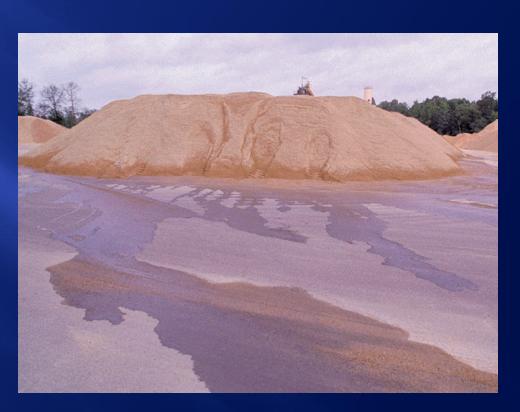
Mix Design Requirements

NMAS	12. 5	mm	9. 5 :	mm	6.3 mm		4.75 mm	
State	AL	NC	NV	UT	NY	MD	GA	OH
Comp. Level	60			50-125	75	50/65	50	50/75
Design Voids			3-6	3.5	4.0	4.0	4.0-7.0	3.5
% VMA	15.5 min		12-22		16 min			15 min
% VFA				70-80	70-78		50-80	
% AC	5.5 min	4.6-5.6				5.0-8.0	6.0-7.5	6.4 min

Permeability

Construction & Quality Control

- Construction
 - Production
 - Paving
- Quality Control


Construction - Production

Aggregate

- Proper stockpiles
 - Slope and Pave
 - Cover, if needed
- Moisture content

Plant operations

- Slower because
 - More time to coat
 - Higher moisture content
 - Thicker aggregate veil
- Aggregate moisture management
- Warm mix can help

Construction - Production

- RAP Process for size and consistency
 - Max size < NMAS
- Storage and Loading
 - Follow normal best practices
- Warm Mix
 - Increase haul distance
 - Pave at cooler temperatures
 - Achieve density at lower temperatures
 - Extend paving season
 - Pave over crack sealer

Construction – Paving Surface Preparation

Milling

- Remove defects
- Roughen surface
- Improve smoothness
- Provide RAP
- May eliminate need for tack
- Size machinery properly

Tack

- Emulsion or hot asphalt
- Polymer emulsion or unmodified
- Rate: 0.10 to 0.15 gal/sy (undiluted emulsion)

Construction – Paving Placement and Compaction

Paving

- Best to move continuously
- MTV or windrow can help
- Cooling can be an issue
 1" cools 2X faster than 1.5"
- Warm mix

Compaction

- Seal voids & increase stability
- Low permeability
- No vibratory on < 1"

Quality Control - Plant

- Aggregate
 - Gradation
 - Moisture Content
- Mix Volumetrics
 - Air Voids
 - VMA
 - Asphalt Content
 - Gradation

Quality Control - Field

- Field Density
 - Thin-lift NDT gauges OK for > 1" mat
 - Cores may not be representative
 - Permeability not as big an issue
- Ride Quality
 - Depends on
 - Condition of existing pavement
 - Surface preparation
 - Overlay thickness
 - Specification should be based on existing condition

Performance

- * Immediate Benefits
- Pavement Life
- * Economics

Immediate Benefits

- Labi et al. (2005)
 - 18 to 36% decrease in roughness
 - 5 to 55% decrease in rut depth
 - 1 to 10% improvement in condition rating
- Noise
 - Corley-Lay and Mastin (2007): 6.7 dB reduction on overlaid PCC
 - FHWA (2005): 5 dB reduction on overlaid PCC in Phoenix
- \odot 3dB reduction = $\frac{1}{2}$ traffic volume

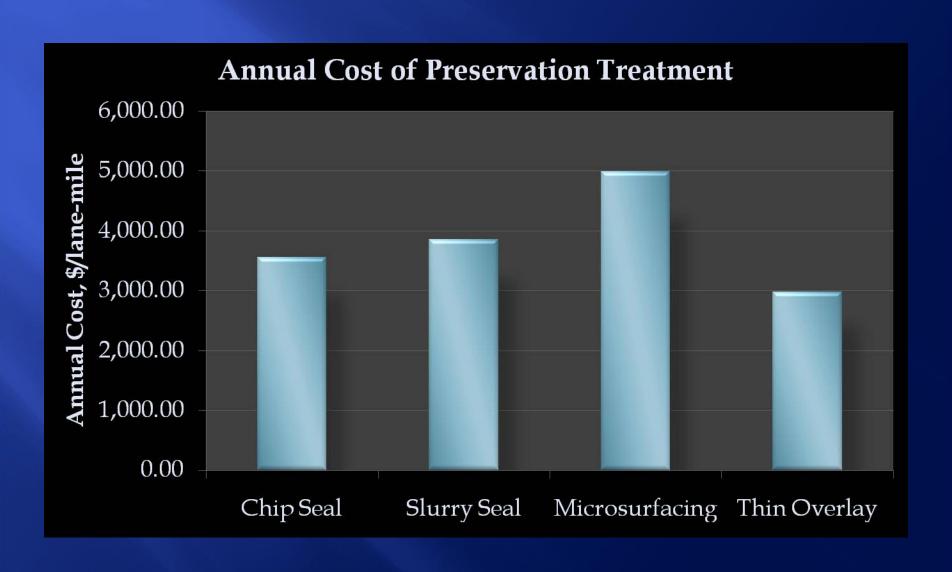
Pavement Life

Location	Traffic	Underlying Pavement	Performance, yrs.
	High/Low	Asphalt	16
Ohio	Low	Composite	11
	High	Composite	7
North Carolina		Concrete	6 – 10
Ontario	High	Asphalt	8
Illinois	Low	Asphalt	7 – 10
New York		Asphalt	5 – 8
Indiana	Indiana Low		9 - 11
Austria	High/Low	Asphalt	≥10
	High	Concrete	<u>≥</u> 8
Georgia	Georgia Low		10

Pavement Life

Location	Traffic	Underlying Pavement	Performance, yrs.	
	High/Low	Asphalt	16	
Ohio	Low	Composite	11	
	High	Composite	7	
North Carolina		Concrete	6 – 10	
Ontario	High	Asphalt	8	
Illinois	Low	Asphalt	7 – 10	
New York		Asphalt	5 – 8	
Indiana	Low	Asphalt	9 - 11	
Austria	High/Low	Asphalt	≥10	
	High	Concrete	<u>≥</u> 8	
Georgia	Low	Asphalt	10	

Pavement Life


Location	Traffic	Underlying Pavement	Performance, yrs.	
	High/Low	Asphalt	16	
Ohio	Low	Composite	11	
	High	Composite	7	
North Carolina		Concrete	6 – 10	
Ontario	High	Asphalt	8	
Illinois	Low	Asphalt	7 – 10	
New York		Asphalt	5 – 8	
Indiana	Indiana Low		9 – 11	
Austria	High/Low	Asphalt	≥10	
	High	Concrete	<u>≥</u> 8	
Georgia	Georgia Low		10	

Economics

- Chou et al. (2008):
 - Thin overlays on asphalt almost always most cost effective
 - Thin overlays on PCC not as cost effective, but greater deterioration prior to overlay
- 2008 NAPA Survey of State Asphalt Associations

Treatment	Expected Life, yrs	Range	Cost, \$/SY	Range	Annual Cost, \$/lane-mile
Chip Seal	4.08	2.5 - 5	2.06	0.50 - 4.25	3,554.51
Slurry Seal	3.25	2 - 4	1.78	1.00 - 2.20	3,855.75
Micro-surfacing	4.67	4 - 6	3.31	2.30 - 6.75	4,989.81
Thin Surfacing	10.69	7 - 14	4.52	2.40 - 6.75	2,976.69

Economics

Conclusions

- Thin Overlays for Pavement Preservation
 - Improve Ride Quality
 - Reduce Distresses
 - Maintain Road Geometrics
 - Reduce Noise
 - Reduce Life Cycle Costs
 - Provide Long Lasting Service
- Place before extensive rehab required
- Expected performance
 - 10 years or more on asphalt
 - 6 to 10 years on PCC

Thin Asphalt Overlays

Thin asphalt overlays are a popular solution to pavement preservation. They are economical, long-lasting, and effective in treating a wide variety of surface distresses to restore ride quality, skid resistance, and overall performance.

Resources

- NCAT website: www.ncat.us
- New NAPA Publication:
 - IS-135, "Thin Asphalt Overlays for Pavement Preservation"
- Transportation Research Record:
 - Labi, et al. 2005.
- Ohio DOT:
 - Chou, et al. April 2008.